Titin isoform switch in ischemic human heart disease.
نویسندگان
چکیده
BACKGROUND Ischemia-induced cardiomyopathy usually is accompanied by elevated left ventricular end-diastolic pressure, which follows from increased myocardial stiffness resulting from upregulated collagen expression. In addition to collagen, a main determinant of stiffness is titin, whose role in ischemia-induced left ventricular stiffening was studied here. Human heart sarcomeres coexpress 2 principal titin isoforms, a more compliant N2BA isoform and a stiffer N2B isoform. In comparison, normal rat hearts express almost no N2BA titin. METHODS AND RESULTS Gel electrophoresis and immunoblotting were used to determine the N2BA-to-N2B titin isoform ratio in nonischemic human hearts and nonnecrotic left ventricle of coronary artery disease (CAD) patients. The average N2BA-to-N2B ratio was 47:53 in severely diseased CAD transplanted hearts and 32:68 in nonischemic transplants. In normal donor hearts and donor hearts with CAD background, relative N2BA titin content was approximately 30%. The titin isoform shift in CAD transplant hearts coincided with a high degree of modifications of cardiac troponin I, probably indicating increased preload. Immunofluorescence microscopy on CAD transplant specimens showed a regular cross-striated arrangement of titin and increased expression of collagen and desmin. Force measurements on isolated myofibrils revealed reduced passive-tension levels in sarcomeres of CAD hearts with high left ventricular end-diastolic pressure compared with sarcomeres of normal hearts. In a rat model of ischemia-induced myocardial infarction (left anterior descending coronary artery ligature), 43% of animals, but only 14% of sham-operated animals, showed a distinct N2BA titin band on gels. CONCLUSIONS A titin isoform switch was observed in chronically ischemic human hearts showing extensive remodeling, which necessitated cardiac transplantation. The shift, also confirmed in rat hearts, caused reduced titin-derived myofibrillar stiffness. Titin modifications in long-term ischemic myocardium could impair the ability of the heart to use the Frank-Starling mechanism.
منابع مشابه
Giant molecule titin and myocardial stiffness.
Wu et al1 found that the titin isoforms N2BA/N2B ratio was decreased from a normal ratio of 1.0 to 0.8 in the paced dog heart. Because N2B represents the isoform with stiffer elastic properties, this resulted in an increased passive stiffness in isolated muscle strips. The authors suggest that this “titin-based” stiffness is acting in concert with “collagenbased” stiffness and that it may count...
متن کاملThyroid hormone regulates developmental titin isoform transitions via the phosphatidylinositol-3-kinase/ AKT pathway.
Titins, giant sarcomere proteins with major mechanical/signaling functions, are expressed in 2 main isoform classes in the mammalian heart: N2B (3000 kDa) and N2BA (>3200 kDa). A dramatic isoform switch occurs during cardiac development, from fetal N2BA titin (3700 kDa) expressed before birth to a mix of smaller N2BA/N2B isoforms found postnatally; adult rat hearts almost exclusively have N2B t...
متن کاملCALL FOR PAPERS Cytoskeletal Networks and the Regulation of Cardiac Contractility Developmental changes in passive stiffness and myofilament Ca sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth
Krüger, Martina, Thomas Kohl, and Wolfgang A. Linke. Developmental changes in passive stiffness and myofilament Ca sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth. Am J Physiol Heart Circ Physiol 291: H496–H506, 2006. First published May 5, 2006; doi:10.1152/ajpheart.00114.2006.—The giant protein titin, a major contributor to myocardial mechanics,...
متن کاملHypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium.
High diastolic stiffness of failing myocardium results from interstitial fibrosis and elevated resting tension (F(passive)) of cardiomyocytes. A shift in titin isoform expression from N2BA to N2B isoform, lower overall phosphorylation of titin, and a shift in titin phosphorylation from N2B to N2BA isoform can raise F(passive) of cardiomyocytes. In left ventricular biopsies of heart failure (HF)...
متن کاملDevelopmental changes in passive stiffness and myofilament Ca2+ sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth.
The giant protein titin, a major contributor to myocardial mechanics, is expressed in two main cardiac isoforms: stiff N2B (3.0 MDa) and more compliant N2BA (>3.2 MDa). Fetal hearts of mice, rats, and pigs express a unique N2BA isoform ( approximately 3.7 MDa) but no N2B. Around birth the fetal N2BA titin is replaced by smaller-size N2BA isoforms and N2B, which predominates in adult hearts, sti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 106 11 شماره
صفحات -
تاریخ انتشار 2002